PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions.
نویسندگان
چکیده
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a member of the immunoglobulin superfamily of cell adhesion molecules with important roles in angiogenesis and inflammation. However, the molecular and cellular mechanisms, and the role that specific PECAM-1 isoforms play in these processes, remain elusive. We recently showed attenuation of retinal vascular development and neovascularization in PECAM-1-deficient (PECAM-1-/-) mice. To gain further insight into the role of PECAM-1 in these processes, we isolated primary retinal endothelial cells (EC) from wild-type (PECAM-1+/+) and PECAM-1-/- mice. Lack of PECAM-1 had a significant impact on endothelial cell-cell and cell-matrix interactions, resulting in attenuation of cell migration and capillary morphogenesis. Mechanistically these changes were associated with a significant decrease in expression of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) bioavailability in PECAM-1-/- retinal EC. PECAM-1-/- retinal EC also exhibited a lower rate of apoptosis under basal and challenged conditions, consistent with their increased growth rate. Furthermore, reexpression of PECAM-1 was sufficient to restore migration and capillary morphogenesis of null cells in an isoform-specific manner. Thus PECAM-1 expression modulates proangiogenic properties of EC, and these activities are significantly influenced by alternative splicing of its cytoplasmic domain.
منابع مشابه
Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells
Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...
متن کاملExtremely low frequency-pulsed electromagnetic fields affect proangiogenic-related gene expression in retinal pigment epithelial cells
Objective(s): It is known that extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) influence multiple cellular and molecular processes. Retinal pigment epithelial (RPE) cells have a significant part in the emergence and pathophysiology of several ocular disorders, such as neovascularization. This study assessed the impact of ELF-PEMF on the proangiogenic features of RPE cells. Mate...
متن کاملPECAM-1 isoform-specific regulation of kidney endothelial cell migration and capillary morphogenesis.
Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in angiogenesis through its involvement in endothelial cell-cell and cell-matrix interactions and signal transduction. Recent studies indicate that the cytoplasmic domain of PECAM-1 plays an important role in its cell adhesive and signaling properties. However, the role PECAM-1 isoforms play during angiogenic events suc...
متن کاملEffects of Surface Viscoelasticity on Cellular Responses of Endothelial Cells
Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nano...
متن کاملDifferential modulation of cadherin-mediated cell-cell adhesion by platelet endothelial cell adhesion molecule-1 isoforms through activation of extracellular regulated kinases.
The role of platelet endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cell-cell interactions and its contribution to cadherin-mediated cell adhesion are poorly understood. Such studies have been difficult because all known endothelial cells express PECAM-1. We have used Madin-Darby canine kidney (MDCK) cells as a model system in which to evaluate the role of PECAM-1 isoforms that d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 299 6 شماره
صفحات -
تاریخ انتشار 2010